m Business Applications Programming

Assignment 1 VB program (15%)
(Due: March 20, 2017 at 23:59)

Learning Outcomes

1. Apply programming concepts to solve business problems
2. Describe the logic and flows of given programs

3. Predict the output of a program

4. Write programs with common programming practices

5. Identify and fix logical and run-time errors in programs
Background

In a re-union dinner, Samuel re-called from the “collective memories” a Mathematics game
in his high school life: The first player has a “Lucky number” from 1 to 30 randomly in his /
her mind. And the second player tries to guess what the number is in as few guesses as
possible, with the help of “hints” from the first player. Once the “Lucky number” is correctly
guessed, the game cycle will repeat with a different “Lucky number”. And the whole game
ends when the second player has made 3 correct guesses (i.e. 3 game cycles completed) or
he / she has used up the maximum of 21 guesses (shared by all 3 different “Lucky
numbers”). Now, you are asked to implement this game in Visual Basic. The computer will
be the first player while the user will be the second player.

Requirements

1. Graphical User Interface (GUI): You are free to design your own interface. But here
are the required components in the interface:
I. Atitle showing the program name, e.g., “Samuel’s Guessing Game”.
II. Alabel showing the remaining number of guesses available.
(counting from 21 down to 0)
lll. A label showing the ordinal number of the guess for the current game cycle.
(counting from 1 up to 21, reset to 1 when the game cycle repeats)
IV. Alabel displaying the current score.
V. Alabel showing the current number input by the user.
VI. Alabel displaying the guessing results, with a hint for a wrong guess.
2. Here are the game logics and rules:

a. When the game cycle starts, the program randomly generates a “Lucky
number” NOT shown to the user. The user input the first guess number using
the textbox. Only input within the integer range (1-30) is permitted.

b. If the guess number is NOT EQUAL to the “Lucky number”, do the following:

i. Display the guessing result, e.g. “This is NOT the Lucky number!”
ii. Display ONE of the following hints:

“The Lucky number is larger than your guess.”

“The Lucky number is smaller than your guess.”

1

m Business Applications Programming

iii. Increase the ordinal number of the guess for the current game cycle
by 1.

iv. Deduct the remaining number of guesses available by 1.

c. If the guess number is EQUAL to the “Lucky number”, do the following:
i. Display the guessing result, e.g. “Congratulations! This is the Lucky
number!”

ii. Increase the score by 10 points.

iii. If the “Lucky number” is found in 5 guesses or less (i.e. the ordinal
number of the guess for the current game cycle is less than or equal
to 5), increase the score by 5 points as a bonus.

iv. Reset the ordinal number of the guess for the next game cycle to 1.
(Not needed for the third game cycle.)

v. Deduct the remaining number of guesses available by 1.

d. The game will end after 3 game cycles completed or the maximum of 21
guesses has reached. In case of maximum number of guesses NOT reached
(ie. the remaining number of guesses available is greater than 0), increase the
score by points equal to the remaining number of guesses as a bonus.
3. Your program must have comments (or documentation) to explain the code.

4. Your program must use condition statement; i.e., if-then-else or select-case.
5. Your program must set both Option Explicit and Option Strict to be On.

Marking Criteria

Area Percentage

Logic Flow and Accurate Calculation 40%
e Satisfying the requirement stated in #2 and #3

User Interface 20%
e A user-friendly interface

Condition statements 20%
e Appropriate use of if-then-else or select-case statements

Comments and Programming Styles 20%
e Providing meaningful comments
e Using meaningful controls, variable and constant names

Total : 100%

FAQs
1. 1do not know how to generate a random number. What should | do?
You may simply use these two lines of code:

Randomize()
CInt(29 * Rnd() + 1)

where CInt() is to convert a number into an integer, Randomize() is the preparation of
random number generator, and Rnd() is to generate a random number.
This statement will generate a random number in the range of 1 to 30.

m Business Applications Programming

2. | think that | am not good at programming. What should | do?
We encourage students to start thinking about the programming logics first. For example,
how to get the number input by the user and compare it with the “Lucky number”? You may
also need to think about the logics of the remaining number of guesses, ordinal number of
the guess for the current game cycle and the score calculation.
If you are still very lost, come and talk to Karen, Kelvin or James.

3. Ido not know how to exit the program. What should | do?
You may use the following statement to terminate the program:

Application.Exit()

Submission Guidelines

1. Please zip your program files and name the zip file as your student ID (e.g.,
07123456.zip).

2. Submit your zip file to Canvas. Multiple submissions are allowed but only the last
submission will be graded. Therefore, you need to make sure the last submission before
the deadline is the best and more importantly it works.

3. Late submission within 24 hours will result in a penalty of 30% deduction in your total
marks. No further late submission is allowed.

4. Plagiarism (Copying) is a serious concern. Students might search for
information/reference/program on the Internet and "Copy & Paste" it directly in their
assignments. Hence, a strict rule is applied that MORE THAN SEVEN WORDS copied
from a source is considered as a cheating. The MINIMUM penalty is zero marks for the
particular assignment.

